求证:1/(1^2)+1/(2^2)+1/(3^2)+ ... ... + 1/(n^2)<2-(1/n)

来源:百度知道 编辑:UC知道 时间:2024/06/28 22:03:07

1/(1^2)+1/(2^2)+1/(3^2)+ ... ... + 1/(n^2)
=1/(1*1)+1/(2*2)+1/(3*3)+....+1/(n*n)
<1/(1*1)+1/(1*2)+1/(2*3)+....+1/((n-1)*n)
=1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+1/(n-1)-1/n
=2-1/n

(1)当N=2 时,有
1/(1^2)+1/(2^2)=5/4〈3/2=2-1/2
所以 不等式成立
(2) 假设当N=K(K〉=2)时不等式成立 ,即
1/(1^2)+1/(2^2)+1/(3^2)+ ... + 1/(K^2)<2-(1/K)
当N=K+1 时有
1/(1^2)+1/(2^2)+1/(3^2)+ ... + 1/(K^2)+1/((K+1)^2)〈2-(1/K)+1/((K+1)^2)
〈2-(1/K)+1/(K(K+1))

=2- 1/K +1/K -1/(K+1)=2-1/(K+1)
所以 N=K+1时成立
由1.2可知 不等式对一切N ,且N〉=2都成立